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SAMPLE-SIZE EFFECTS IN
FAST-NEUTRON GAMMA-RAY
PRODUCTION MEASUREMENTS:
SOLID-CYLINDER SAMPLES*

by
Donald L. Smith

Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

ABSTRACT

The effects of geometry, absorption and multiple scat-
tering in (n,Xy) reaction measurements with solid~-cylinder
samples are investigated. Both analytical and Monte—Carlo
methods are employed in the analysis. Geometric effects
are shown to be relatively insignificant except in defini-
tion of the scattering angles. However, absorption and
multiple-scattering effects are quite important; accurate
microscopic differential cross sections can be ektracted
from experimental data only after a careful determination
of corrections for these processes. The results of meas-
urements performed using several natural iron samples.
(covering a wide range of sizes) confirm validity of the
correction procedures described herein. It is concluded
that these procedures are reliable whenever sufficiently
accurate neutron and photon cross section and angular dis-

tribution information is available for the analysis.

' \
*
This work was performed under the auspices of the U.S. Energy

Research and Development Administration.
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1. INTRODUCTION

A recent report describes the facility which has been
developed at Argonne National Laboratory's FNG for (n,Xy)
reaction studies [1,2]. The geometry is shown in Figs.1l-6
of Ref. 1 and it is recommended that the reader refer to
this earlier report in conjupction with the present one.

Experience with this facility has indicated that the
precision of raw data obtained generally improves with in-
creased sample size. The relative importance of back~
ground decreases and the statistical accuracy of the
significant data improves under these conditions. Further-
more, in measurements with relatively large samples, it is
possible to exploit the advantages of longer flight paths
(improved time-of-flight resolution) and massive detector
shielding. The penalty involved in measurements with large
samples is that corrections to the raw data for effects of
absorption and multiple scattering can be quite large.
Accurate determination of these corrections requires know-
ledge of neutron and photon cross sections and their
angular distributions and use of complex computational pro-
cedures. Clearly, a compromise is necéssary. The objec-
tive of this report is to present the results of a detailed
study of sample-size effects which was conducted in the
course of developing the data processing routines which ére
employed in the reduction of experimental data acquired
with this facility.

The results of a literature survey were disappointing.
There are relatively few readily available articles on the
subject of sample corrections [3-13]. Most of these refer-
ences deal with eiperiments in which neutrons (not gamma
rays) are detected. These articles provided guidance, but
were not a basis for the present work.

The analysis presented in this report employs only a

few simplifying assumptions and therefore adheres to a
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realistic representation of the physical problem.

The 7Li(p,n)7Be reaction is usually used as a neutron
source at this laboratory for measurements in the region
of interest for current (n,Xy) studies (En N 5 MeV).
Natural lithium metal 1s evaporated onto a thin tantalum
backing to form a target. The proton-beam spot on target
is defined by slits and is essentially rectangular. The
lithium films are relatively thin (& Ep % 0.1 MeV). The
analysis presented in this report assumes an infinitesimal-
ly thin square target; however, the routines actually used
for data processing take cognizance of realistic target
thicknesses by superimposing contributions from several
very thin layers. Target thickness is an important consid-
eration whenever the cross section varies rapidly with
neutron energy or for proton energies near the resonaﬁce in
the lithium source reaction at ~ 2.3 MeV. The angular dis-
tribution of neutrons from the source reaction is taken into
account. Neutrons from the 7Li(p,n)7Be* and 7Li(p,n3He)4He
reactions are considered in the analysis for proton energies
above their production thresholds.
’ Gamma rays from (n,Xy) reactions are detected with a
Ge(Li) detector and the yields of full-energy-peak events
are recorded. Since the Ge(Li) detector has a diameter of ~
5 cm and is placed ~ 100-150 ecm from the sample, it is as-
sumed that the only photons which are capable of producing
full-energy pulses in the detector are those which either
experience no interaction in the sample after production via
(n,Xy) reactions or are coherently scattered in the sam~ .
Ple. Therefore, the total photon cross section is assumed
for sample absorption calculations and a small correction
for coherent scattering is applied when necessary (see
Appendix A).

The scattering of neutrons in the sample by elastic and

inelastic scattering through discrete levels is treated.
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The effects of more complicated reactions such as (n;2n),
(n;n,p), (n;n,p), (n;n,a), etc. are insignificant for
En N 5 MeV so they are ignored in the computations.
Kinematic effects are considered, and energy-dependent
cross sections and angular distributions are employed.
The scattering sample is assumed to be a uniform
right~circular cylinder centered on the beam lipe with
axis normal to the scatterin%/plane defined by the beam
line and the detector. Macroscopic cross sections are
used in absorption calculations, and samples consisting of
either single- or multiple-isotope elements, compounds or

mixtures can be treated.

Let
YTOT = total observed gamma-ray yield for a
particular geometry,

Y0 = gamma-ray yield produced by unscattered
neutrons,

Yz = gamma-ray yield produced by neutrons which
have scattered "¢" times in the sample be-
fore initiating ‘(n,Xy) reactions,

k = highest order of scattering considered,
then k
Y §Y+éY=Y[1+S (¥,/Y)1. ()
TOT ~ "0 M Tk 0 oo 2o
If
o, = (¥,/Y5), (2)
k
“ror ~ y§1 % )
then
<
Yoor ¥ Yo O aTOT)._ (4)

The symbol E; represents summation to avoid confusion
with ¥ used for macroscopic cross sections elsewhere in

this report. The quantity Aoy is called the multiple-
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scattering parameter and a, is the %2-th component. For

most samples,

Qo < 1 and @1 << o, (5)

and the sums in Eqs. 1 and 3 converge rapidly. Accept-
able accuracy is obtained in practice for k = 3.

The evaluation of YO and Gpop are treated separate-~
ly. The quantity YO is determined analytically while
AroT 1s deduced by Monte-Carlo methods.

The acquisition of nuclear data required for the
computations is considered in Section 2; this is a prob-
lem which must be addressed before any sample-size cor~-
rection factors can be computed. Section 3 of this re-
port deals with evaluation of YO and its relationship to
the (n,Xy) reaction differential cross section which is
sought from the measurements. Section 4 treats the sub-
ject of multiple scattering and determination of %roT
In Section 5, the results of computations are compared
with experimental data and a simplified computational

procedure is explored.

2. NUCLEAR DATA FOR COMPUTATIONS

The methods for computation of sample correction fac-
tors described in this report are powerful in principle;
however, the quality of the results obtained is only as
good as the accuracy of the nuclear data utilized in the
analysis. Thus, the experimenter must exercise judgement
in selection of the sample size for an ekperiment. If
the available cross section and angular distribution
information is uncertain, it is necessary to use smaller
samples and thereby sacrifice sensitivity and statistical
accuracy in order to minimize the magnitude of the correc-
tions which must be computed. Actually, the quality of
available nuclear data is gradually improving, and high-
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speed digital computers are accessible to most researchers.
Therefore, it appears worthwhile to develop the sophisti-
cated computational tools required to determine realistic
corrections and exploit the experimental advantages of
using relatively large samples whenever possible.

The existence of pronounced resonance structure in
nuclear data complicates many aspects of nuclear science
and technology; the present topic is no exception. It has
been found convenient to smooth all energy-dependent
nuclear data used in correction calculations with resolu-
tion functions which approximate the experimental condi-
tions. The smoothed excitation functions can usually be
represented with sufficient accuracy by a relatively small
number of parameters. Fig. 1 demonstrates the concept.
The use of smoothed cross sections for sample absorption
and multiple-scattering calculations is an approximation,
the validity of which must be investigated carefully prior
to use in applications. One method is to compare the re-
sults of small- and large-sample measurements in regions
where strong resonances are present in the cross sections.

Neutron cross section and angular distribution infor-
mation is obtained from the evaluated neutron data file,
ENDF/B-IV [14]; photon cross sections are obtained from an
evaluation by Storm and Israel [15].

3. EFFECTS OF GEOMETRY AND ABSORPTION

The dominant features of the observed gamma-ray yield
from (n,Xy) reactions in the sample are determined by geom-
etry and the absorption of neutron and gamma radiation.
These features are predicted by the response of YO in Eq.
(4) to variation of the experimental conditions. Multiple

scattering, represented by a in Eq.(4), yields a less

TOT _
significant correction to this behavior. This section de-

scribes the procedure used to compute Y. and presents the

0
results of calculations designed to explore the sensitivity
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of YO to various parameters.

3.1 Mathematical Formalism
The yield for the entire sample is computed by sum-

ming the contributions from various portions of the sam-
ple. The neutron source and the sample are repreéented

as described below. Fig. 2. illustrates the geometry.

Let

dn = distance from a particular neutron source
point to a particular sample point,

dY = distance from a particular sample point to
the gamma-ray detector (assumed to be a
single point),

Gn = distance through the sample which the
neutron must penetrate to reach the partic-
ular sample point,

5Y = distance through the sample which the gamma

ray must penetrate to reach the gamma-ray

detector,

R. = radius of the sample,

H = height of the sample,

D = distance from the center of the neutron source
to the center of the sample (which is also the
pivot for the gamma-ray detector),

D, = distance from the center of the sample to the
gamma-ray detector,

© = incident-neutron angle relative to the beam

n
line,

ODET= angle of gamma-ray detector relative to the
beam line,

OnY = angle of emission of the gamma ray relative to

the incident neutron,
F = absolute neutron-source strength of a uniform
square source (neutrons/sr),

a = dimension of the square neutron source,
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(dc}dQ)Y differential gamma-ray production

cross section for the (n,Xy) re-

actilon,

(xT,yT,zT) = coordinates for a point on the neu-
tron-source surface,

(xl,yl,zl) = coordinates for a point S1 in the

sample,
(xD,yD,zD) = coordinates for the gamma-ray de-

tector,

Ng = number of atoms per unit volume of
the sample which can contribute to
(n,Xy) reactions,

ZnT = neutron macroscopic total cross
section for the sample material,

ZyT = photon macroscopic total cross sec-

tion for the sample material.

Two-body neutron-producing reactions are assumed in
the present analysis. The neutron fluence Fn 1s a func-
tion of the reaction parameters, incident energy, and
emission angle. Kinematics governs the variation of neu-
tron energy with angle. The cross sections (dc/dQ)Y, znT
and ZyT are energy-dependent; (dc/dQ).Y also varies with
angle eny'

The grid systems for the neutron source and the sam-
ple are illustrated in Fig. 2. The sample grid system
used yields more uniformly sized elements than a standard
cylindrical-coordinate grid system. The parameters which
define these grid systems are

ng = mesh for the sample height (the sample is

divided into n, layers of height H/nH along
the x-axis),

n, = radial mesh (the sample is divided into a

series of nR—l shells of thickness RS/nR
plus a central cylinder with radius RS/nR)’

n = fundamental angular mesh (the central

cylinder, j=1, is divided into n, wedges while

¢
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the jth éhell has jn¢ segments, j=2,...,nR),
n, = neutron-source ?esh (the square source is
divided into no, sections each with area
az/nTz).
The total number of elements in the sample is % n¢nR(nR+ 1).
The variation in volume of these elements depends only on

the radial variable. Therefore

2
T R H
= —3S5  c21-1 -
Vj a 2 0 ( j ) ’ j_ly'--’nR- (6)
R "H™
A constraint on the angular mesh n¢ » required for the
type of sample grid used, is n¢2 2.

The intercept of the beam line and neutron source
plane is selected as the origin of coordinates. The

coordinates of the center of each neutron-source element

are given by (xTa’yTB’zT) where
Xy = Eﬁ—- (20 - n, - 1), a = 1,...,nT, )
T
— _a — - =
yTB = 2nT (28 nT 1), 8 l,...,nT’ (8)
and zZp = 0 for all elements.

The coordinates of the gamma-ray detector are given

by the formulas

yb = DY sin eDET , (9)
z = Dn +-DY cos QDET’ (10)
and Xy = 0.

The coordinates of the center of each sample element

are given by the formulas

X =

H
14 'i-g (21 - n, - 1), i=1,...nH, (11)

yljk = rj sin ¢jk’ j=l,...,nR and k=1,...,jn¢, 12)
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z =D + rj cos ¢jk’ j=1,...,nR and

19k
k=1,...,jn¢, (13)
and
RS
rj = 2_11; (25-1) , j‘-"l,...,nR , (14)
™
¢jk = 3;; (2k-1) , j=1,...,nR and k=1,...,jn¢ (15

Analytic geometry 1s applied in derivation of formulas
for § and §_. The expression for §_ is

n Y n

Gn f dn -8 (16)
where

a =[x+ (g - yp? + (2 - 2% D)

[ Bn(yo- yp) + Cn(zo- zp) ]

Sn T (B < +C_“)
n n
{(B 2+ c ?)RZ - [C_(yp = y5)-B_(zq~ z0)]2}%’
- (B 7+c?)
n n

(18)
B, = Op - yp/d, (19)
c, = (z1 - ZT)/dn’ (20)

and (xo,yo,zo) are the coordinates of the center of the

sample (x0 =Yy = 0, z_ = Dn). The expression for GY is

0
GY = dY -8y s (21)
where
4, = [og= x? + G- vl + (egm 212, (22)
.. [BY(yO— yD)Z+ CY(:O- zp) ]
Y (BY + CY ) -
B2+ ¢ ORE - [C (v yp)-B (2= 2,) 127,
- (3.7 + c_?)
Y Y
(23)
BY = (Yl“ YD)/dY ) (24)
CY = (zl— zD)/dY . (25)
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Let

n, = neutron absorption factor,
nY = gamma-ray absorption factor,
then
n, = exp (—ZnTén) , (26)
= -z .8 . 27
n, exp ( T Y) (27)
If
©ET = efficiency of the gamma-ray detector,
defined as the ratio of detected (in the
full-energy peak) to incident gamma rays,
then
n
T’ng;nR’n¢ Fn |y { n
Y = —-2-1—-2-} }N (dO‘/dQ) v .
0 08,1,k Pr |2 [|E 7S v'3DET

(28)
Y. 1s a function of E and © . The energy E_ lies
0 n ny n
in the range (0,E . ) while the scattering angle 0
n,max ny
is in the range (0,m). Therefore, it is possible to
define resolution functions ¢§(En) and a{(OnY) such that

E
Y, = In’ma" (S’(En)dEn , (29)
O .
m
Y, = Io d(eny)deny X (30)

These resolution functions can be used to compute the
average neutron energy <En> and the average scattering

angle <OnY> according to the formulas

E
_ -l n,max
<En> = YO jo En (§°(En)dEn , (31)
m
=yl
<@ny> =Y, jo enY "d(@ny)deny . (32)

The relationship between Yokand the differential
cross section (dO‘/dQ)Y is indicated in Eq. (28). Let
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<(d0/dQ)Y> = value of the differential cross section
corresponding to neutron energy <En> and
scattering angle <OnY> R

and define

& = (do/dQ)Y / <(d°/dQ)Y> ’ ’ (33)
then Eq. (28) can be rewritten in the form

nT,nH,nR,n¢ F n
n n

n
or s 8w la[a e e

(34)
which explicitly relates the gamma-ray yield to the
differential cross section for a specific neutron
energy and scattering angle. This formalism requires an
approximate knowledge of EY (the shape of the differential
cross section function in terms of neutron energy and
scattering angle). In practice, most of the contributions
to Y0 come from limited ranges of neutron energy and
scattering angle. Therefore, one estimates the behavior
of EY for the regions of interest and applies this esti~-
mate in computations. Improved accuracy can be
achieved by the process of iteration. Experience has
shown no more than two passes are required for most ap-

plications.

3.2 Results of Numerical Studies

It is worthwhile to factor the gross solid-angle and
sample-volume dependence from the expressions for Yo.
This can be achieved through definition of the quantity
?6 as follows:

2

YO = (w RS

-2 -9 —
HD DY ) Y, - (35)
In this.section, sample geometry and absorption effects

are investigated solely in terms of the behavior of ?6.
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A Systems Engineering Laboratories Model 840 MP

digital computer was utilized in computation of ?b for
various experimental conditions. A nominal parameter
set for these calculations appears in Table I. The
variation of ?6 in response to departures from the
conditions represented by these parameters 1s investi-
gated in the present section.

Selection of an appropriate set of mesh parameters
Nps Oy, Np and n¢ is an important consideration. Coarse
meshes lengthen the computation time unnecessarily. The
computations were least sensitive to o, and most sensi-
tive to n, as expected. The mesh parameters listed in
Table 1 appear to be satisfactory for most practical ap-
plications.

The effects of radiation absorption were investi-
gated by computing Y6 for four sets of parameters which
differ from each other only in the assumed values for
Ent and ZYT: i) neutron and gamma-ray absorption (Table
I), ii) gamma-ray absorption only (EnT= 0), 1iii) neutron
absorption only (XYT= 0), and iv) no absorption
(ZnT = ZyT = (). The effects of absorption are a reduc-
tion of gamma-ray yield and a distortion of the observed
angular distribution. The relative gamma-ray yields at
OAET = 90° for these four cases are: 1) 0.34, ii) 0.50,
iii) 0.68, and iv) 1.00. The induced anisotropy for
each situation is shown in Fig. 3. These distortions ap-

pear to be well represented by the expression

YO (GDET ) (36)
with AO assuming the following positive values for the

four cases considered: 1) 0.172, ii) 0.0658, iii) 0.0056,

ey [
) ~ Y0 (90°) (1 - AO cos ODET

~15-



and iv) 0.0021. Geometric effects and neutron attenua-
tion alone produce very little distortion; however, gamma-—
ray absorption (particularly in combination with neutron
absorption) skews the observed angular distribution about
@DET = 90° so that the back-angle yield exceeds the for-
ward—-angle yield.

The relative contributions to ?6 for ODET = 90° from
the midplane sample elements are presented for each of
the four cases considered as follows: 1) Fig. 4, 11) Fig.
5, 111) Fig. 6, and 1iv) Fig. 7. In conjunction with the
results presented in Figs. 4-7, it is worthwhile to con-
sider the ratios of yields from larger segments of the
sample. Define the '"back" of the sample as that half of
the cylinder which is farthest from the neutron source,
and the "front" of the sample as the opposite half.
Similarly, label as "far" the sample half farthest from
the gamma-ray detector. The opposite half is labelled as
"near". Computed "front"-to-"back" and "near"-to-"far"
ratios are listed in Table II.

The parameter Dn was varied over the range 5-50 cm
with other parameters fixed at the values given in Table
I. The value of ?6 for eDET = 90° increased by only 3.3%
as p increased from 5 to 50 cm. This would seem to
imply that a parallel neutron beam approximation is war-
ranted. However, variation in the distortion of the
angular distribution was more pronounced as AO decreased
from 0.268 for Dn =5 cm to 0.121 for D, = 50 cm. For
small values of distance Dn’ the sample subtends a size-
able solid angle so that the average scattering angle be-
comes quite sensitive to_I%. Therefore, use of the par-
allel neutron beam approximatiom is not recommended.

The parameter DY was varied over the range 30-200 cm
with other parameters fixed at the values given in Table
I. The value of Yb for ODET = 90° decreased by only 1.2%

~16-



as DY increased from 30 to 200 cm, and the distortion
parameter AO decreased from 0.190 to 0.168. A parallel
gamma ray approximation could be justified for these
calculations.

Variation of the sample height H produces very little
effect on ?6; however, the gamma-ray yileld and distortion
of the angular distribution depend critically upon the

sample radius R Computations were made for RS = 0.635,

0.95, 1.27, 1.53, 1.905 and 2.54 cm with the other para-
meters fixed at the values listed in Table I. The results
of these calculations appear in Table III. The near con-
stancy of RS ?b for large values of RS implies that, in
this domain, the total gamma-ray yield from the sample in-
creases more or less linearly with sample radius rather
than as the square of the radius. The difference is due to
absorption. Clearly, the total gamma ray yield from the
sample also increases linearly with sample height. A set
of calculations was made assuming no neutron or gamma-ray
absorption and using values of H = 2 Rq ("square'" samples).
As RS increases from 0.635 cm to 2.54 cm, Y0 decreases by
1.7%. This result indicates that the yield per unit volume
depends only slightly on the size of the sample in the
absence of absorption.

The most significant geometric effect is the loss of
angular resolution which results from the use of large
samples. The maximum geometric angular range for GnY
associated with the conditions of Table I is ~ 19°. The
contribution to this spread from the neutrons is n~ 17°
while that from the gamma rays is ~ 2°. The resolution
functions (Ony)’ as defined by Eq. (30), were determined

for several values of 0 using Table I parameters. The

DET
results are presented in Fig. 8. Values of <6nY>, computed
with these resolution functions, differ significantly from

the corresponding detector angles ODET when GDET approaches
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0° or 180°. This result illustrates the well-known fact
that relatively small samples are required for the
measurement of differential cross sections near 0° or
180°.

Gamma-ray angular distributions for (n,Xy) reactions
are symmetric about GnY = 90°. Computations were made
using various assumed gamma-ray differential cross section
functions (do/dQ)Y. These calculations indicate that, for

positive values of AO’ the formula

YO n (Constant) (1 - AO cos ODET)<(do/dQ)Y>' 37

is valid to a considerable degree of accuracy. Furthermore,
the distortion parameter AO and the average scattering angle
<®ny> are very insensitive to the shape of the differential
cross section (do/dQ)Y. Eq. (37) resembles Eq. (34) and it
is concluded that the complicated sum given in Eq. (34) has
a simple angular dependence. This particular result will be
designated the "factorization rule" since it provides a
prescription for relating the observed gamma-ray yield to
the shape of the differential cross section. Fig. 9 demon~
strates the factorization rule. This rule applies reason-
ably well for most realistic applications even when multiple
scattering is taken into consideration (Section 4.2). Ap-
élication of the factorization rule leads to a significant
labor reduction in processing angular distribution data.

Realistically, the neutron field produced by proton
bombardment of natural lithium is a mixture of first- and
second-group neutrons plus some breakup neutrons at higher
bombarding energies (Section 1). The energies and angular
distributions of these components differ and this will in-
fluence the overall gamma-ray and monitor yields observed.
Of concern, however, is the effect of superposition of con-
tributions on the applicability of the factorization rule.
To investigate this point, computations were made for

several incident energies assuming realistic lithium first-
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and second-group neutrons plus some breakup neutrons at
higher bombarding energies (Section 1). The energies
and angular distributions of these components differ and
this will influence the overall gamma-ray and monitor
yields observed. Of concern, however, is the effect of
superposition of contributions on the applicability of
the factorization rule. To investigate this point, com-
putations were made for several incident energiles as—
suming realistic lithium first- and second-group neutron
sources as well as the hypothetical isotropic source
identified in Table I. These calculations show that the
distortion parameter A is relatively insensitive to the
shape of the neutron-source reaction angular distribution.
The parameter A varies with neutron energy since it de-
pends on the total cross section. However, since A << 1
for typical conditions, the energy dependence of A does
not affect the angular distributions severely. For
eiample, A is found to vary by ~ 30% over the range

En = 0.9-2 MeV for the sample described in Table I; how-
ever, the ratio Y, (0°)/Y0(90°) varies by only ~ 3% over
this range. Therefore, it is often possible to apply the
factorization rule for multigroup neutron sources. The
formulas suggested by the results of numerical analysis

are

?b(multigroup) X (Constant) (1 - <A> cos eDET) .

S ¢ <W@olad> (38)
m

= 9)
< A> (§ GmAm/§Gm) (39)

The parameters Gm depend upon the group intensities and

sample absorption properties for neutrons in these groups.

The factorization rule is not a rigorous product of

the formalism, but is an emperical concept which has been
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distilled from the results of numerical calculations,
Caution should be exercised when using this rule in
processing data, particularly for measurements involv-

ing multigroup neutron sources.

4. EFFECTS OF NEUTRON MULTIPLE SCATTERING

The obvious result of multiple scattering is the en-
hancement of the observed yvield relative to that predicted
by the computations of the previous section. The objec-
tives of the present section are to describe the method
used for the evaluation of the multiple scattering para-
meter apgp and to investigate the dependence of multiple

scattering on various experimental factors.

4.1 Mathematical Formalism

The approach taken in this work is to calculate values
of Y2 for £ =0, 1, ..., k (see Section 1) by statistical
methods and then compute the partial multiple-scattering
parameters o, by means of Eq. (2). The total multiple-
scattering parameter opor 18 given by Eq. (3). There are
several ways to formulate Monte-Carlo problems [13]. The
present approach generally resembles that which is employed
in multi-dimensional Monte-Carlo integration. The ‘funda-

mental assumption of Monte-Carlo integration is that

. - oy hist .
j de f (@D V5= § £(@y) (40)
A hist 47

for a sufficiently large number of histories Nhi £ where
qi is selected at random from a region of v-dimensional

Cartesian space defined by

>

q= (ql,qz,...,qv) (41)

>
q = (dqldqz....dqv) (42)

[=))

V= (ql,max - ql,min) (qZ,max - q2,min) ""(qv,max_ q,

(43)
~20-~
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The region of space defined by the volume V is a v-dimen-
sional rectangle and is selected so that the true region
of interest lies entirely within V. The Monte-Carlo
process consists of selecting points Zi at random in the
>
larger region. If 9y falls outside the true region of
interest, then f(;i) = 0 (a "miss"). This approach does
not lead to optimum efficiency, however such wastefulness
is usually tolerable with high-speed digital computers
and avoids many computational complexities.

Some of the variables used in this analysis are de-
fined in Sections 1 and 3; others are defined at appro-
priate points in the present section.

First, computation of YO by Monte-Carlo methods is
considered (see Fig. 10). The origin of coordinates is
the neutron source (assumed here to be a point). The
beam line is the z-axis, the sample axis is normal to the
y - z plane as in Section 3. The center of the sample is
at the coordinates (0,0,Dn). The gamma-ray detector is a
point in the y - z plane located a Z.stance DY from the
center of the sample. The first-scattering point S1 in
the sample is identified by the vector ;1 with coordi-
nates (xl,yl,zl). A related spherical coordinate system

can be defined by the equations

x; = r; sin 91 cos¢l, (44)
¥y = ry sin 0 sing;, (45)
2, = r; cos @l. (46)

The sample 1s located entirely within a region of space

defined by the following expressions

*1,min 2r s '1,max, 47)
rl,min = Dn - RS’ (48)
2 2 2.%

= 1 ]
rl,max [(Dn+ Rs) + % H°+ RS] ,
(49)
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0 < ¢, < 2m, (50)
< <
0 - @1- el,max’ (51)
= tan L [(4 B2 + RO/ -
el,max tan © [(4 H + R) /(Dn R)]I. (52)

The energy and angular dependence of all physical para-
meters is taken into consideration as well as kinematic
effects. The gamma-ray yield from (n,Xy) reactions

initiated by unscattered neutrons is given by

n V1 Nhist
Yo v N S r (53)
hist 1=1 oi
with
4 n
Fn ny sin@lNS(dc/dQ)Y (axz) € ET
¥
ro = 9 if ;l is inside the sample, (54)
0 otherwise (a "miss"),
n = exp(-annT) . | (55)
V1 = 27(ry pax ~ *1,min’ %1, max (56)
For §i to lie inside the sample, it is required that
-H/2 < x) < H/2 , (57)
2 2.%
[ vy + (Zl - Dn) 1° < Rg - (58)

Although determination of YO by Monte-Carlo inte-
gration is technically simpler than the approach de-
scribed in Section 3, it is slower since quite a few
histories are required for convergence. Furthermore, it

is not possible to derive the midplane-yield profile in-

formation presented in Figs. 4-7 from a simple Monte-Carlo

> .
treatment. However, for 2-1 it is impractical to deter-

mine Yz by any method other than Monte~Carlo analysis.
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Next, consider computation of Y1 (see Fig. 10).
The scattering preceding the (n,XY) event can be
either elastic or inelastic. The possibility for more
than one neutron channel adds an additional complica~
tion to the computations. Some neutrons which scatter
in the vicinity of point S1 propagate toward point S2
defined by the vector ;2. Assume that there are Nl
distinct scattering processes applicable to the first
scattering point Sl. The j-th process is defined by

the parameters Alj’ Qlj and (dZ/dQ)lj where

Ay

Y 3
(dZ/dQ)1j= macroscopic differential neutron-

mass of the target nucleus,

reaction Q-value,

scattering cross section.
For simplicity, the inelastic scattering processes are
assumed to be isotropic since they are nearly so in
reality. Let wl be the total macroscopic scattering
cross section defined by the equation

Ny

v, = j§1 (ds/de) (59)

then the relative probability Plj of each process is
given by the equation :

Plj = (dZ/dQ)lj /¢1. (60)

Ny

Since
Pij =1, (61)
j=1
the unit interval can be divided by a set of N1 points

{plj} defined by the equation
h|
P13 S Py - (62)
. =1
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A random number R is selected for each history. The
neutron is then assumed to propagate from point S1 to

point S2 by means of the j-th scattering process if

<
pl,j"l <R - plj (63)

Althbugh the particular scattering process is selected
by random sampling in the space of open ghannels, the
macfoscopic differential scattering cross section used
in the computation is'wl. »

A new spherical coordinate system with origin at S1
is defined. The cartesian coordinates (origin at the
neutron source) and spherical coordinates in the new

system for point S2 are related by the equations

X, =%, + 1, sin @2 cos ¢, , (64)
Y, =Yg + r, sin 92 sin ¢2 , (65)
zy =2 + r, cos 62. . (66)
The region of space defined by the expressions
o= 925 T, . (67)
o= ¢25 o, (68)
< <
0 - r,- Ty max ° (69)
) 2.%
r2,max = (H“ + 8 RS) , . (70)

encompasses the entire sample. Then,

N
V.V hist
Y1 v Nl 2 E; I‘11 (71)
hist i=1 '
with
Fn Ny sin Olwln sin 02 .
r = Ng(do/dn) (—%) €pET (72)

if x1 and xz are inside the sample,

0 otherwise ( a "miss"),

\
n, = exp(-rZZnT),

= 2
V2 27 r2,max
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For §2 to lie inside the cylinder, it is required that

-~ H/2 < x, < H/2, (73)

2

ly,? + (z,-D D217 < R, . (74)

Generalization to arbitfary orders of multiple

scattering is straightforwaﬁd. The expression for Yk is

eee V ist
v 12 V12 - Vkn Sh (75)
hist
with
¢ k 4
Fn(R:1 n sin 0, ?Q) Met1 sin ek+1 .
nY
. N_(do/dQ) {+ | ¢ (76)
= S d DET
Ty = < T{d 2

- >
if xl s see xk+l are inside the sample,

L 0 otherwise (a"miss').

The parameters required for computation of all the higher-
order scattering contributions resemble those described

for computation of Yl'

Values of rOi’ ces s rki are computed for every

history (i=1, ... , Nhist)' Whenever a particular in
= 0 (a "miss'"), the higher-order expressions T R
2+1,1

cee rki
the efficiency for computation of Yk declines with in-~

are automatically equal to zero too. Thus,

creased scattering order k. However,

Yo >> Y1 >> Le.. > Yk . an

so it is unnecessary to- determine the high-order contri-

butions to Ypgp (Eq. 1) as accurately as the low-order

contributions.

4,2 Results of Numerical Studies

Multiple-scattering calculations were performed with

the SEL 840MP computer using a code named GAMSCT. This
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code has been written in FORTRAN IV and a listing of the
orders is given in Appendix B,

A nominal set of parameters, which provided a start-
ing point for numerical studies of multiple scattering,
is given in Table IV. Experience indicates that for k=3,
satisfactory accuracy in computation of %oT is achieved
for Nhi ~ 100,000. This value was selected for all
calculations. Typical efficiencies ("hit" percentages)
of the Monte-Carlo trials are as follows: Y (54.9%),

Y (14.22) Y (3.7%) and Y (0.8%). Relative values of Y
1, Y2 and Y3 for various QDET are plotted in Fig. 11.
It is seen that the ratio Y2+1/Y is more or less inde-

pendent of £, and furthermore for all &,

Yz( DET) ~ Y2(90°) (1 - A cos eDET) . (78)

4"]
AO>A1>A2>A3'\:0. (79)

Intuitively, one expects the effects of geometric aniso-
tropy to be washed out by multiple scattering. Eq. (79)
supports this contention. Eq. (78) indicates that the
factorization rule applies for an assumed isotropic
differential cross section (do/dQ) Actually it also
applies reasonably well for most realistic differential
cross section functions. However, the factorization rule

does fail in extreme cases where (do/dQ) approaches zero

for @ = 0° or 180°. Under these. conditions, the ob-
served yield for QDET near 0° or 180° is dominated multi-

ple scattering in a fashion which cannot be explained by
a simple rule.

The effect of sample size was tested by varying R
and H (H = 2R ) with respect to the values in Table IV.
The results are presented in Fig. 12. The contributions
from second- and higher-order scattering are negligible
for small samples. Variation of D and‘D over realistic
ranges produced very little effect on the computed

multiple—scattering parameters.
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Computations performed with various assumed realis-
tic neutron-source reactions indicate that the multiple-
scattering correction parameters are relatively insensi-
tive to the properties of the neutron source. Therefore,

it is reasonable to compute o for various energies En

and angles QbET assuming an izgzropic, monoenergetic
neutron source.

The multiple-scattering parameters are relatively
insensitive to EnT and ZYT. However, they depend criti-
cally on the magnitudes of the scattering cross sections.

The relationship

a, ~ (Constant)ZEf (80)

gives a rough indication of this dependence for the sim-
pPle case of energy-independent elastic scattering. The
multiple scattering parameters are considerably less

sensitive to the shape of the neutron scattering angular

distributions.

5. COMPARISON OF EXPERIMENTAL
AND COMPUTED RESULTS FOR
NATURAL IRON SAMPLES
- Measurements were performed with seven natural iron
samples to test the validity of the methods described in
this report. The sizes of the samples investigated were
RS 0.635, 0.953, 1.27,A1.59, 1.91, 2.22 and 2.54 cm
(H 2 RS). Realistic energy-averaged cross sections
were utilized in the computations (Section 2 and Refs. 14
and 15). The facility described in Ref. 1 was utilized
for the irradiations. A 0.1-MeV-thick natural lithium

I

target was bombarded with 3.68-MeV protons. Approximately
90% of the neutrons originated from the 7Li(p,n)7Be re—

*
action (En N2 MeV) and 10% came from the 7Li(p,n)7Be re-

3

action (En " 1.535 MeV); the proton energy was slightly
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below threshold for the 7Li(p,n3He)4He breakup reaction.
The Ge(Li) detector was situated at ODET = 90°. The
relative neutron fluence was monitored by time-of-flight
techniques using a plastic scintillator.

The full-energy peak ylelds for the 0.846-MeV 1line
from the 56Fe(n,n'y)56Fe reaction were divided by the
masses of the corresponding samples (proportional to the
volume) to determine quantities proportional to the
yield per atom. All measurements were performed in iden-
tical geometry, so the vields pef atom deduced are pro-
portional to ?6 1+ aTOT) as defined in Sections 1-4,

Measurements for samples with RS < 0.635 cm were not
practical because of background problems; however, com-
putations were performed for a wide range of sample sizes
including RS near zero. In the limit of very small sam-
ples, geometry, absorption and multiple-scattering ef-
fects vanish. The experimental and computed values were
normalized so that the yvield per atom approaches unity
for very small samples.

Four sets of computations were performed. The as-
sumptions made in these calculations are as follows: 1)
no absorption, geometric corrections only, 1i) absorp-
tion of neutrons and gamma-rays with the neutron total
Cross section used for absorption calculations and
multiple scattering neglected, 1ii) identical to (11)
except that the total non-elastic cross section is used
for the neutron absorption calculations, and iv) identi-
cal to (i1) except multiple scattering is considered
(most realistic approach). The results of these calcula-
tions are compared with the experimental data in Fig. 13,
The calculations labelled (111) and (iv) both agree well
with the experimental results; the agreement of set (iv)
values is superior as anticipated. The agreement for

such a wide range of sample sizes is very encouraging
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(the diameter of the largest sample considered is equiva-
lent to 1.4 mean free path lengths for neufrbns and 2.5
mean free path lengths for 0.846-MeV photons).

The assumptions made for the set (1i1) calcula-
tions were suggested by Day [3]. The Day approximation
is widely used by researchers in the analysis of (n,Xy)
data. It is appealing because it eliminates the neces-
sity for performing multiple-scattering calculations.

The results shown in Fig. 13 correspond to QDET = 90°,
Computations were performed to compare the predictions of
the Day approximation with those from the:more realistic
treatment at other angles. The results of this analysis
show that these two approaches yield results which agree
within ~ 3% for QDET = 90° - 150°; however, the agreement
for %pr = 30° - 90° is only within ~ 7% (for an iron
sample with RS = 1.9 cm). This suggests that for careful
work, where accuracies of better than 10% are sought, it
is advisable to employ a realistic treatment which in-
cludes multiple-scattering analysis. In applications
where such accuracy is not sought, or is unfeasible, the

Day approximation appears to be warranted since it saves

considerable labor.

6. CONCLUSIONS

The formalism described in this report provides a
means for determining differential cross section data for
(n,Xy) reactions from measurements made using relatively
large cylindrical samples provided that accurate absorp-
tion and scattering cross section data is available.

Geometric effects reduce angular resolution and make
it difficult to measure differential cross sections near
0° or 180°; otherwise, they have a relatively minor in-
fluence on the measurements.

The absorption of radiation reduces the overall
yield and distorts angular distributions. Under most

conditions, this distortion assumes the form 1-A cos@DET
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(8>0); the shape of the differential cross section can be
deduced from the experimental data by factoring out this
simple angular dependence. Factorization is possible,
even in the presence of multiple scattering, for most
realistic situations and this saves considerable labor in
processing aata.

The Day approximation [3] permits one to avoid making
detailed multiple scattering calculations, and appears to
be an acceptable approach when accuracies of no better

than v~ 10% are acceptable.

-30-



ACKNOWLEDGEMENTS

The author 1s indebted to J. W. Meadows and P. T. Guenther

for valuable suggestions offered during the course of this work.

~-31-



APPENDIX A
COHERENT PHOTON SCATTERING

Photons which scatter coherently in the sample are
indistinguishable from those which suffer no interaction.
The coherent scattering cross sections depend upon photon
energy EY and atomic number Z, They decrease rapidly with
Ey. For this Teason, the coherent scattering correctionsg
are relatively small for most materialg of interest when
EY exceeds a few hundred kilovolts.,

In order to estimate the correction, a model which
assumes a well—defined,distributed gamma-ray source inten-
sity in a solid cylinder is employed. The unscattered and
coherently-scattered photon yield at a distant detector ig
computed as described below,

If zy,COH is the integrated macroscopic coherent scat-
tering cross section, then the macroscopic differential

Scattering cross section is given by

3z
_ COH 2
(dZ/dQ)Y’COH = —llgw— (1 + cos O‘y) . (81)

Assume that the cylinder is divided into a large num-

ber of discrete elements. Let

§i = coordinates of the center of the i-th element
AVi = isotropic gamma-ray source strength density
for the ith component (gamma rays/sr/cm3),
;A = coordinates of the detector.
di = distance through sample material which the
photon must penetrate to reach the detector
if it originates at point ;i. (See Section 3,
YU = yield at the detector due to unscattered photons
YS = yield due to photons which have scattered once

coherently in the sample.
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S -
iAViexp( FYTdi)

n
YU'\J § |§ _;l €DET , (82)
oi D
> >
- - - \
g SiAViAVjexp[ ZYT(61+|xi le,] .
1j Ixi le lxj xDI
. (dZ/dQ)Y,COH,ijEDET (83)

The problem has been formulated in cylindrical co-
ordinates and a code is available for operation on the
SEL 840 MP digital computer. A number of calculations
were performed assuming a constant value for Si through-
out the sample. Samples with RS = 1.9 cm and H = 3.8 cm,
fabricated from Li, AL, Ti, Fe, Zn and Mo, were con-
sidered. The detector was assumed to be 130 cm from the
sample. The ratio YU/ (YU+YS) was computed for EY =
0.1, 0.3, 0.5, 0.8, 1.0, 2.0 and 5.0 for these samples.
The results appear in Table V. The coherent scattering
correction is clearly quite small if not negligible for

most cases of interest.
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APPENDIX B

LISTING OF CODE GAMSCT

Code GAMSCT was developed to perform the multiple-
scattering computations discussed in Section 4 of this
repoft; This code is written in ASI Standard FORTRAN
V. A1l code input is from cards (Unit 4). Output is
produced on a teletype (Unit 1) and a line printer
(Unit 5). The version of this code listed here is
operated on a Systems Engineering Laboratories Model
840 MP digital computer.
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o

oaan

aaa

aaon

10

20
21

22

23

24
25

26

27
28

30

32

GAMSCT=D,.LSMITH=SEL 840MP

GMQFT
GMQFT

DIMENSION ENT(25),SIGNT(25),EGP(25),SIGGP (25) 4NWGP(6) JEWGP(6,15), WGMSAT
1GP(6,15),ANS(6) 1 AZNS(6)sNNS(6),ENS(6.25),SIGNS(6, 25).MHNQ(6).NNN§(GM<PT
26,10),EWNS(6,10,15) »WNS(6,10,15),DSIGNS(6),WT(10), YLD(5)-YID§UH(5)GMQFT

3,PSI(g) e INDEX(4),UNDFX(5),NHIT(5)sNLEV(g)sA(25):B(25),WORK (25)

DATA P1/3.14159/
VALUE(VsVMIN, VMAX)SVMIN®VR(VMAX®VMIN)

GMRCT
GMSAT
GMSCT
GMQPT
GM]CT

SEPAR(X1:,Y1,214 X2, Y2o?2)=§0RT((Xi-XZ)'(X1~X2)*(Y1-Y2)'(Y1-Y?)*(Zl-GMQPT

122)%(Z1+22))
CONTROL

READ(4,2) IC
FORMAT(11)

G? TP(10,20.30,50),1C
PAUSE

G@ To 1

READ INTERPOLATIBN TABLES

READ(4,21) MNT

FBRMAT(1615)

READ(4,22) (ENT(!),SIGNT(1)»]I=1sMNT)
FARMAT(BE10,4)

READ(4,21) MGP

READ(4,22) (EGP(I1),SIGGP(]),131,MGP)
READ(4,21) MWGP

IF(MWGP) 23,25,23

DO 24 1=1.,MWGP

READ(4,21) NWGP(I)

M=NWGP (1)

READ(4,22) (EWGP(1,J) . WGP(IsJ)sJ31,M)
READ(4,21) MNS

D@ 28 1=1,MNS

READ(4,22) QGNS(1), AZNS(I)

READ(4,21) NNS(I)

M=NNS (1)

READ(4,22) (ENS(I1,J)»SIGNS(1,J),Jst, M)
READ(4,21) MWNS(1)

IF(MWNS (1)) 26:,28.,26

LEsMWNS(])

Da 27 J=i1.,L

READ(4,21) NWNS(I,J)

M=NWNS(1,4)

READ(4,22) (EWNS(I1,JsK)sWNS{TIsJeK)sKal,M)
CANTINUE

READ AND WRITE BASIC PARAMETERS

READ(4,31) NSCAT.NHISTY
FBRMAT(11,16)

READ(4,22) RS,H,DNO0,DGO
READ(4,22) EGsSIGGT,ENTHG
READ(4,22) A1T,A2T,QT
READ(4,32) ET,NWT
FORMAT(E10.4,15)
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GMRCT
GMSET
GMSOT

GMSET 1

GMSAT

GMSAT 1

GMSCY
GMSCT
GMQPT
GMSPT
GMSCT
GMQPT
GMQFT
GM:PT
GMQPT
GMQPT
GMQCT
GMS AT
GMSCT
GM&CY
GMSET
GMSOT

GMQPT 3

GMQrT
GMQFT
GMqu
GMSET
GMSrTY
GM]CT
GMSCT
GMSCT
GMSFT
GMSCT
GMS T
GMSCT

GMSPT

GMSCT
GMQPT
GMGFT
GMSCT
GMSOT
GMSET
GM]NT
GMseT
GMICT
GMS]CT
AMSCT
GMSAT

N AIDOD® NI A NN -

I Py

L N e i Ty
QD DNDI>PRN LM

DN
N -
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aan

c
C
c

IFI(NWT) 34,34,33

- 33 READ(4,22) (WTCI) . 121 ,NWT)

34 WRITE(5,35) NSCAT,NHIST

35 FﬂRMAT(lHl/liHNSCATaNHIST/Ilo16)
NRITE(SISﬁ) RSDHDDNOODGO _

36 FERMAT(iZHRSaHaDNOaDGO/4EIO.4)
WRITE(5,37) EG.SIGGT.ENTHG

37 FGRMAT(14HEG-SIGGT:ENTHG/SEID.4)
WRITE(5,38) AlT,A2T, 07

38 FZRMAT(10HA1T.A27.0T/3510.4)
WRITE(5,39) EToNKWT

-39 FZRHAT(&HET:NHT/E10.4.15)

IF(NWT) 40,42,40
40 WRITE(5,41)
41 FORMAT(SHWT(1)) ‘
WRITE(5,22) (WT(1)s1a1,NWT)
42 WRITE(5,43)
43 FORMAT(/5H, 00 00)

READ AND WRITE SCATTERING ANGLE,

50 READ(4,22) THTANK
WRITE(5,51) THTANK

51 FGRMAT(/7HTHTANK=.E10.4)
THDET=PI#THTANK/180,0

PRELIMINARY CALCULATIANS

RSRS=RS#RS
HHsH &N

HDZBO ] S.H
RIMIN=DNO«RS

CONVERT T2 RADIANS

RinAxesonrtu~0¢DN03220nu~o-RSo2;onRSRS¢o;25-HH)
THIMAXFATAN(SQRT(0.250HH¢RSRS)/R1MIN)

VOL1=2.0¢pI'(RlMAX-RiMIN)OTHiﬂAX
RMAX=SORT(HH+8,.0#*RSRS)
VDLH:Z.OGPI'PIORMAX
YD=DG0lSIN(THDET)
EDSDNooDGUGCﬁS(THDET)
Dg 60 121 ,NSCAT
NHIT(I)=zqg

60 YLDSUM(I)=0-0
DB 61 1=21,MNS

61 NLEV(1)zp
IHIST=1

CeessoeSTART gF WISTORY Loep
c

c

100 D8 101 Is1,NSCAT
101 UNDEX(1)s0

SELECT SCATTERING PBINT s(1)

R=RANF (®1)
RR:VALUE(R:RiMIN.RiMAX)
RERANF (®1)
THBVALUE(Ro0.0tTHiHAX)
RZRANF(w1)
PHI:VALUE(R.0.0.Z.O-pI)
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GMSCTY 40
GMSET 61
GMSET 42
GMSET 6%
GMSCTY 44
GMSCT 65
GM&CT K6
GMSCT 67
GMSCT 48
GMSAT 69
GMSET 79
GMSAT 79
GMRCT 72
GmMsrT 73
GMSCT 74
GMSPT 75
GMSCT 76
GMSRT 77
GMSCT 78
GMsrT 79
GMSECT RD
GMSAT B9
GMSCT A2
GMSCT 83
GMSCT a4
GMSCY AS
GMSCT A6
GMSFT R7
GMSCT B8
GMSRT B9
GMSCT 9p
GMSET 99
GMSLT 92
GMSET o3
GMSCT 94
GMSCT o8
GMSCT 06
GMSAT 97
GMSCT 98
GMsNT 99
GMSCTin0
GMSATLNg
GMSOT1n?
GMSET103
GMerT1n4
GMScTy0s
GMSCT106
GMSCT107
GMRLTL0R
GMSrT109

GMSPT111




QOO0

aan

Qoo

Qoo

150
151

152

160

170
200

201
202

203

240

SINTHSSIN(TH)

XZRReSINTH#COS(PHI)

YZRR#SINTH#SIN(PHI)

ZzRReCAS(TH)

IF(X+HD2) 700,700,150

IF(X~HD2) 151,700,700

EZMDNO «Z=DNQ

TESTaY«Y+ZMDNO®ZMONO

IF(TEST=RSRS) 152,700,70¢

JNDEX(1)=1

NHIT(L)aNHIT(1) 41 ) . y
CALL ANGLE(XlY:Za00030'UnUnonU00:0-UoDNOoOoUAQoOnOnUnTHT)

CALCULATE NEUTRON ENERGY AND FLUX AT PBINT S(1)

CALL KXNAM(A1T1A2T01-0087,QT:ETpTHTpENoEDUH)
IF(ENENTHG) 700,700,160 ‘

CALL DISTR‘NT.THT:FT.NWT»iD,
DELTN=DELTA(O-0:0.UDDNOtD.O'0.0lU-OnXoYoanS.l)
CALL TNTRPL(MNT:ENT:S!GNT.ENoVSNT)
ETAN=EXF(‘VSNT.DELTN)

FLUX:FTQETAN.SIN(TH)'VQLi

CALCUL ATE GAMMA PRODUCTI®BN FR@M P@INT S(1)

DG’SEPAR(XlY:Z:O.OnYDAZD)

CALL INTRPL(MGP:EGPnSIGGPoEN.VSGP)

IF(MWGP) 170,170,200

DSIGGP=VSGP/4.0/P!

G2 1@ 203

D@ 202 1=1,MWGP

M=NWGP (1)

DB 201 Jsi.M

ACJYSEWGP(],J)

B{J)=WGP(1,J)

CALL INTRPL(MsAsB,ENIWBRK(1)) ) ) .
CALL ANGLE(O.U.YD:ED.X,Y.Z,X,Y,z,0.0.0.0,0.0,THNG)
CALL DISTR(N@RK:THNG;SG:MNGP,lD) :
DSIGGP=VSGP#SG/4.,0/P1
DELTG=DELTA(U.0:0.0nDNOaD.U;YD:ZD.X.Y,Z.RSni)
ETAG*EXF(~SIGGT#DELTGR)
YLDG=FLUX'DSIGGP'ETAG/DG/DG

UPDATE YLDSUM(1)
YLDSUM(1)=YLDSUM(1)+YI DG

CHECK IF MULTIPLE SCATTERING CALCULATIONS ARE REQUESTED.,
INITIALIZE PARAMETERS IF REQUIRED

IF(NSCAT=1) 240,700,240
ISCAT=2

XSAV1z0,0

YSAV120,0

ZSAV1'0.0

XSAv2sX

YSAV2=Y

2SAV2:Z

Dg 250 182,NSCAT

JSIOI
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GMafT120
GMSAT129
GMQCT127
GMSCT123
GMSrT154
GMSET125
GMSAT127
GMSET12a
GMSCT129
GMSCT130
GMSNT139
GMSCTL32
GMSTTL3x
GMSCT1R4
GMSCT135
GMSCT136
GMST137
GMSCT1Xg
GMSrT139
GMST140
GMSCT144
GMSCT142
GMSCT1 43
GMSCT144
GMSET145
GMRCT146
GMSLT147
GMsfT148
GMSCT149
GMSCT150
GMSCT151
GMSCT152
GMSNT153
GMSCT154
GMSETL55
GMSCTi54
GMSAT157
GMROTL58
GMSET159
GMCT160
GMSCT161
GMSCT142
GMSMT143
GMSCT144
GMSMT145
GMSCT146
GMSrT167
GMS(T168
BMSAT169
GMSCTL70
GMSrT171
GMSCTL72
GMSCT173
GMSOTi74
GMSLT175
GMSCT176
GMSCT177
GMSCT17R
GM&rT179



250
c

CXXxX
c
c
c
300

350
351

352

(s XoNe!

400
401

402

403
404

405
406

407

408

409

INDEX(J)=0
START @F MULTIPLE SCATTERING Laep
SELECT SCATTERING P@INT SCISCAT)

RsRANF (e1)
RR=VALUE(R,»0,0,RMAX)
RERANF (m1)
THEVALUE(R:0,0/P1)

RERANF (w1}
PHI=VALUE(R00.012.U'P!)
SINTHSSIN(TH)
X:XSAVZ*RR'SINTH'C@S(PHI)
Y=YSAV2*RR'SINTHOSIN(PHI)
Z=Z2SAV2+RR#CES(TH)
IF(X#HD?) 700,700,350
IF(XeHD2) 351,700,700
ZMONO=Z=DND
TEST=Y¢Y*ZMDNO'ZMDNO
IF(TEST=RSRS) 352,700,700
JNDEX(1SCAT)=1
NHIT(]SCAT)=NHIT(ISCAT)*i

CALL ANGLE(x.x.z.XSAVQ.YSsz.ZSAV2.xSAV2.YSAva.ZSAV2.stv?.VSAv1

1SAV1, THSCT)

SELECT NEUTRON SCATTERING PR@CESS FoRr PBINT S(ISCAT=1)

DB 407 1s1,MNS

Ea=-ouscr)«(1.0*(1.0087/(A2N5<1)-1;0037))-to;s-anstl)/cAQNS(i)-1Lo

1087)/931.478))
IF(EN=EB) 400,400,401
DSIGNS(1)=0.0
Go Tp 497
MaNNS(])

D2 402 Jsz1.,M
ACJIZENS(1,J)
B(J)=SIGNS(T,4)
CALL INTRPL(M:A:B-EN.VSSCT)
IF(MWNS (1)) 403,403,404
DSIGNS(I):VSSCT/d-O/PI
Ge Te 407
MEMWNS( 1)
DB 406 Jgsq,M
LaNWNS( 1,4)
DB 405 k=1,L
ACK)2EWNS(I,JsK)
B(K)=NN5(I;J:K’
CALL INTRPL(L:A:B.EN.NZRK(J))
CaLp DlSTR(NZRK.THSCT.SSCT-Mn10)
DSIGNS(I)=VSSCT'SSCT/4.0/PI
CONTINUE
SUMSeT=0,0
Do 408 1=1.MNS
SUMSCTlSUMSCT‘DS!GNS(T)
IF(sumMseT) 409,7004+409
PSI(1)=0,0
KeMNg 41
IF(MNSe1) 410,410,411
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GMSLT1AN
GMQrT1R4
GMSNTIRD
GMSCT1R3
GMSCT1R4
GMSMT1RE
GMSCT1R6
GMSMT1R?
GMRCT{ AR
GMSCT1RY
GMSCTy oD
GMSHT194
GMSAT192
GMSrTig9R
GMQNT194
GMSFT195
GMINT196
BMRNT197
GMSCT198
GMSET199
GMSCY200
GMRNT2n1
GMSOT2n2

» ?GMSﬂT2n 3

GM&CT204
GMSCT205
GMSNT2n6
GMseT2n7
GMSCT208
GMSrT209
GMSCT210
GMSCT21 1
GMerT292
GMSCT21 3
GMQQI214
GMSNT215
GMerT216
GMSET217
GMSCT218
GMsLT219
GMsrT220
GMRcTZ?j
GMerT227
GMSrT223
GMsCT224
GMSnT225
GMSOT226
GMSCT227
GMSCT258
GMSCT229
GMSCT23N
GMSAT234
GMSCT2%?
GMSET233
GMafy234
GMSCT2 135
GMRLT234
GMs 1237
GMSCT238
GMenT239




aaa

oNeNe]

QOO0

aagaon

410
411

412
413

414

500

501

502
600

601
602

603

" 610

INDXs1

Gg Tp 414

SUMPS1=20,0

D& 413 132,MNS

Jzlet
SUMPSI=SUMPSI«DSIGNS(J)

PSI(1)2SUMPSI/SUMSCT

IF(PSI(1)=1,0) 413,413,412
PSI(1)=1,0

CANTINUE

RERANF(»1)

CALL FINDI(PSI,K,6,R:1NDX)
NLEV(INDX)sNLEV(INDX)+1

CALCULATE NEUTREN ENERGY AND FLUX AT P@INT S(ISCAT)

ENSAVaEN

CALL KINAM(l.OOB?.A2NS(INDX).1;0087.QNS(INDX).ENSAV.THSCf.Eﬂ.FDUM)

IF{EN=ENTHG) 700,700,501

CALL INTRPL(MNT,ENT,SIGNT,EN,VSNT)
ETAN=EXF (=VSNT#RR) :
FLUX:FLUXnSUMSCTDETANbsIN(TH)OVELH

CALCULATE GAMMA PRADUCTIAN FR@M PBINT S(1SCAT)

DGXSEPAR(X,Ys2,0.0,YN,2D)
GALL INTRPL(MGP,EGP,SIGGP,EN, VSGP)

IF(MWGP) 502,502,600

DSIGGPsVSGP/4.0/P1

G& T? 603

DP 602 Is1,MWGP

M=NWGP (1)

D@ 601 J=1,M

ACJ)ZEWGP( T, d)

BlJIzWGP(1,J)

CALL INTRPL(MsA,B,ENsWBRK(])) ]
CALL ANGLE(0,0,YDsZD,X,Y,2,X,Y,2,XSAV2,YSAV2, ZSAVS, THNG)
CALL DISTR(W@RK, THNG,SG,MWGP,10)
DS1GGP=VSGP®SG/4,0/p1 _ )
DELTG3DELTA(0.0,0,0,DN0,0.,0,YDs2D,X,Y,2,RS,1)
ETAG=EXF (=SIGGT#DELTR)

YLDG=FLUX#DS IGGP*ETAG/DG/DG

UPDATE YLDSUM(ISCAT) AND FIX INDEX(ISCATe1)

YLDSUM(ISCAT)=YLDSUM(ISCAT)+YLDG
JaISCATe1

INDEX(J)=INDX
TEST FOR END @F MULTIPLE SCATTERING L@@P, RESET PARAMETERS FAR

NEXT CYCLE IF REQUIRED

ISCAT=ISCATSt -
IF(ISCAT=NSCAT) 610,610,700
XSAV1 zXSAV2

YSAVizYSAY2

ZSAV1e2SAV2

XSAV2=X

YSAV2 uY

ESAV2a2
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GMSCT240
GMSNT241
GM](CT242
GM§NT243
GMSCT244
GMSAT245
GMACT246
GMSNT247
GMSCT244
GMSMT249
GMSAT250
GMSCT259
GHﬁgTZS?
GMSCT25%
GMECT254
GMSnT258
GMSCT256
GMSrT257
GMeCT258
GMSNT259
GM]CT241N
GMSNT261
GMSCT262
GMSCT263
GMaCT244
GMrNT245
GMSCT246
GMSOT267
GMSCT248
GMST269
GMsCT270
GMSCT271
GMSCT272
GMS(CT273
GMarT274
GMSCT275
GMeCT276
GMSET277
GMSCT278
GMSrT279
GMSCT280
GMSCT281
GMSCT2R?
GMSAT2A%
GMSCT2A4
GMSAT2AR5
GMRCT2R4
GMSCT2A87
GMRCT2A4
GMSCT2A9
GMRCT290
GMSPT291
GMSCTY292
GMSNT29%X
GMSCT2604
GMSAT298
GMSCT294
GMQT297
GMICT208
GMQNT299



QOO0

aoooaon

G2 Te 300
XXX END oF MULTIPLE SCATTERING Lo@P

UPDATE LISTARIES AVERAGE, INTERMEDIATE BUTPUT IF §81 up, _
FOR CAMPLETION oF REQUESTED NUMBER pF HISTBRIES @R S$S2 yp

AND

PROCEED T@ BUTPUT @R CONTINUE WITWH HISTORY ACCARDING T@ auTCAME

700 D@ 701 Is1,NSCAT
701 YLD(I)aYLDSUM(I)/FL@AT(INIST)
CALL SSWTCH(1,K1)
IF(K1e2) 702,706,702
- 702 WRITE(5,703) IHIST
703 FPRMAT(517)
WRITE(5,703) (JNDEX(J),J=1,NSCAT)
IF(NSCAT=1) 704,705,704
704 IzNSCATe1 .
WRITE(5,703) (INDEX(J),Jsi,1)
WRITE(5:703) (NLEV(J),Jsq,MNS)
705 WRITE(5,703) (NHIT(J).J=1,NSCAT)
o WRITE(5.22) (YLD(1),1s1,NSCAT)
706 CALL SSWTCH(2,K2)
, IF(K2=1) 707,800,707
707 IF(IHIST=NHIST) 708,800,800
708 IHIST=IHIST#
G2 T 100

vv00END 2F HISTBRY LzoP

COMPUTE ALFA

- 800 WRITE(5,801) IHIST

801 FaRMArtaouHISTzRIEse.re)
IF(NSCAT=1) 804,804,802

802 WRITE(5,803)

803 FORMAT(7HNLEV(]))

WRITE(5,703) (NLEV(I),1=1,MNS)

804 WRITE(5,805)

805 FERMAT(7HNHIT(1)) _
WRITE(5,703) (NHIT(I),121,NSCAT)

B WRITE(5,806)
806 FBRMAT(6HYLD(1))
" WRITE(S5,22) (YLD(1),121,NSCAT)
IF(NSCAT=1) 807,1,807
807 FYLDzY_D(1)
D? 808 Is1,NSCAT

808 YLD(I)=YLD(1)/FYLD
ALFA=0,0
Do 809 1s2,NSCAT

809 ALFAzALFA+YLD(])

WRITE(S5,810)

810 FORMAT(17HNDRMALIZED YLD¢1)y)
WRITE(5,22) (YLD(I),1%1,NSCAT)
WRITE(5,811) ALFa

811 FORMAT(5HALF AR E10.4)

IF(K2=1) 1,812,1
812 PAUSE
Go Te 1

40~

FINAL QUTPUTeIF NSCAT.GT.j] RENGRMALIZE YLD(1) Sa YLD(1)=q AND

GMerT3nn
GMSAT3Ng
GMRCTIND
GMSNT3n3
GMSATING
GMSCT3nG
GMSCT3ng
GMSTT3n7?
GMRCTINA
GMSET300
GMSCT31n
GMSET317
GMSAT312
GMSrT313
GMSCT314
GMSnT315
GMSCT314
GMSNT317
GMSCTZ18
GMSCT319
GMSCT320
GMSrT324
GMSCT322
GMSAT323
GMSAT3IZ4
GMICT 355
GMSCT326
GMSET327
GMSAT328
GMSAT320
GMSOTIRN
GMSrT331
GMSNT3I32
GMSCT3 33
GMSCT3x4
GMSCT335
GMeCT336
GMSNT337
GMSCT33A
GMSET330
GMSrT340
GMSCT341
GMSrT342
GMST343
GMQrT344
GMST345
AMeCT346
GMSET347
GMSCT348
GMSrT340
GMSCT 350
GMQMN T35
GMeNT352
GMSCT353
GMICT 354
BMSRT355
GMSCT356
GMerT3S?
GMSCT3SR
GMRAT3S509




QOoOoaoaoaoon

4 S=(BWa(YONeYL1W)$CWo (FOW=Z1W)=SORT(ABS((BW#BW+CWECH) #RSERS = (CUs(YIN
1-YOW)=BWe(ZINwZOW) )# (CHO(YLIN=YOW ) =B H(ZLW=Z0W) 1)) )/ (BUSBW+CWRAW)

END
FUNCTIgN DELTA(X0.Y0,20,X10Y1,21,X2,Y2,22,RSsINDEX)

FUNCTION T2 DETERMINE PENETRATION DEPTH FBR R.C, CYLINDER,
INDEXs1,2 @R 3 IMPLIES CYLINDER AXIS PARALLEL T2 X,Y @R #=AXiS
RESPECTIVELY. (X0,Y0.%0) 1S CYLINDER CENTER, (X1,Y1,21) s
EXTERI@R PBINT, (X24Y2,22) |S INTER[OR P@{NT, RSzAYLINDER

RADIUS

R=SQRT((X2'X1)'(X2-X1)¢(Y2~Y1)'(Y2-Y1)0(22-21)O(Z?-Z1))
A=(x2=X1)/R
Bz(Y2e«Y1)/R
Ca(z2=21)/R
G@ T@(1,2,3):INDEX
YOW=YD
20W=20
YiWsyi
Z1W3Zy

BWz8

CW=C

GO Te 4
YOWsSZD
ZOW=X0
YiWz21
Z2ilWzaX1

BW=C

CW=A

Ge Tg 4
YOWsX0 .
ZO0WsYD
YiW=X1
ZiW=Y4

BW=4A

Cw=R

DELTAzR»S

RETURN

END

SUBROUT INE KINAM(AL1,A2,A3, QrE1.TH3,E34,E32)

W1=931.,478#A1

W22931.478#A2

W32931,478%A3

WASH1+W2=W3=g )
EFze0a(1,04(W1/W2)=(0,5#Q/W2))
EB==0a(1.,0+(W1/(W2=W3))w(0,540/(N2eW3)))
IF(E1=EF) 1,1,2 ’
E31=0.0

E32=z0.0

Gg To 6

C=CAS(THI)

A32.,00(WI*W4+EL*Q) ]

B2 ,00FE1e(WieWdeQ)w(2, . 08W48Q+0Q00)
DsElw(E1¢2,0w,1)eCeC ,
TERM= (B#Be2,00WI#A0B+4,00W3eWISD)4E{#(EL+2,00W1)
IF(TERM) 1,1,3

DEN=sAvA~4,0D

Uz(4,00W3eD=A8B)/DEN
Vz2,04CeSQRT(ABS(TERM) ) /DEN
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GMSCT340
GMSFT349
GMSCT342
GMSAT3A3
GM2CT3A4
GMSrT345
GMSOT346
GMSAT347
GMSCT348
GMSCT34Q
GMsAT370
GMSRTI74
GMSAT3I72
GMSNT373
GMSCT374
GMSrT375
GMarT376
GMgCY377
GMSCT3I7A
GMSrT379
GMSCT3AN
GMSNT381
GMQCT3R2
GMSCT3IAR
GMRrT3IR4
GMSATIARG
GM&CT3IA6
GMSNT3A?
GMSCT 388
GMSCT389
GMRCT3IQ0
GMST391
GMQCT392
GMST393
GMSCT3I04
GMSrT395
GMRNT3Q6
6MSNT397
GMSCT308
GMS T 3099

GMSNT4ND

GMSAT401
RMSCT4N2
GMSFT403
GMSCT4n4
GMSrT405
GMSpT4n6
GMSCT4nT
GMS]rT4nAa
GMSCT4n9
GMSCT410
GMSET41
GMSCTA442
GMRNT41 X
GMarT414
GMSrT415
GMRT416
GMSFT417
RMSNT418
GMSNT419



20

21
22

10
11
12

E31=zUey

IF(E1=ER) 4,4,5
IF(TH3»1,5707963) 41.11,11
E32=z(wy

G2 To 6

E32=E31

RETURN

END

SUBRAUTINE ANGLE(x1H.v1H.ziu.x17.v17.z1r.x2H.Y2H.22H.xzi.#éi.#zr.T

1K)

v1=5anr(Aes<(x1H-x17>~(xiH-X1T>o(Y1H-v1T)-(viu.vi?)ocziu.;{i>~<ziH

1=-Z17)))

VZlSQRT(ABS((X2H-X2T)'(X?H-XZT)‘(YZH»YZT)'(Y?H—Y?T)O(ZZH-i??)o(ZZH

1=-221)))

DGT:(X1H-X1T)Q(X2H-X?T)¢(Y1H-Y1730(Y2H-Y2T)*(ZiHcliT)P(ZQHoﬁﬁf)

CTH=2DpT/Vi/V2
THBARCCES(CTH.2)

RE TURN

END

SUBRAUTINE DISTR(W,TH, Vs NWINMAX)
DIMENSION W{(NMAX)

v=1,0

IF(NW.EQ,0) G2 Tp 4

D@ 2 1=1,NW )

IFCH(I)) 21420,21
VADD=0,0

GB Tp 22
VADD=W(1)wp@BLYL(2,1,TH)
VzVevaDD

CONTINUE

IF{V) 3,4,4

v=0,0

RETURN

END ‘
FUNCTIgN PALYL(IBP,N,ANG| E)
X = ANGLE

G2 T9(10,11,12),10P

X = .017453293e)

X = cosS{x)

NBIG = N=1

IF(NBIG) 1,2,3

PaLYL = 1,0

G2 To 100

PBLYL = X
Gg Teg 100

PL = X

PLM1 = 1,0

D@ 4 L=4,NBIG . - :
POLYL =z (FLOAT(2#Ls+1)uxepL = FLEAT(L)#pLML1)/FLAAT(L*1)
PLMI = pL
"PL = PpLYL

RETURN

END

SUBROUTINE INTRPLIN,XTsYT,X,Y)

DIMENSI@N XT(N),YT(N)

IF(X=xT¢(1)) 1,3,4

WRITE(1,2)

FBRMAT(B8HRANG ERR)

PAUSE

Y=YT(1)
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GMSrT4on
GMSNT424
GMQCT422
GMQrT423
GMQNT424
GMS(CT425
GMSCT426
GMSrT427
GM&CT408
GMST429
AMRNT43p
GMSNT434
GMRrT432
GMSC T433
GMSCT434
GMS( 7435
GMSCT436
GMSC 7437
GMSCT43A
GMSNT439
GM]CY44D
GMSrT444
GMST442
GMSRT443
GMRCT444
GMSCT445
GMQCT446
GMSCT447
GMSCT448
GMSC 1449
GMSCT450
GMST451
GMS]CT45?
GMSET453
GM]CT454
GMST455
GMSCT456
GMgr Y457
GMsSCT458
GMSNT450
GMSCT460
GMSNT461
GMRCT442
GMSrT463
GMSCT464
GMSC Y465
GMSCT446
GMSCT467
GMgrTd68
MSCT469
GMSCTA470
GMST4714
GMQCT472
GMSET473
GMRCT474
GMSrT475
GM]rT476
GMSrT477
GM]CT478
GMSNT479



@ N s

10
11
13

24

100
200

36

Nt & [4V] | ol

G@ To 24

IF(X=XT(N)) 7.45.1
Y2YT(N)

Go T 24

120

JeN
K30.5#FLBAT(Jel)e0,1
KaKe+1

IF(XaXT(K)) 9,10,11
J3K _

Gg To 12

YsYT(K)

G2 To 24

1=K

[F(Jelwg) 13, 1308
I=J

Jzlwy
DENaXT(J)=XT(])
Cl’(XT(J)'YT(l)'XT(I)OYT(J))/DEN
C2s(YT(J)=YT(1))/DEN
YzCleC2%X

RETURN

END
FUNCTIUN(ARCCQS(X.K)
ARCCpS=1,5707963
IF(ABS(X) GT..999999) X=2,999999#X/ABS(X)

IF(XnX, GT.1,0E=70) ARCC@S=ATAN(SORT(ABS(1. /X/Xe17.)))

IF(X.LT.0.) ARCCOS=3. 1415926~ARCCG5
GB T@ (100,200):K
ARCC@AS=sARCCBS#57,2957795
RETURN

END

FUNCTIBN EXF(2)

IF(2) 1,1,3 .
IF(Z2.LT+=«7040) 2=+70.0
IF(2.G6T,~,1E=04) G2 To 2
EXFSEXP(2) '
Ga Ta 4

1F(2.67,70,0) Z2=s70,0
IF(Z2,LT,.1E=04) Gg T4 2
EXFzEXP(Z)

Gg T0 4

EXF=z1.0¢7

CANTINUE

RETURN

END

SUBRAUTINE FINDI(Y N NDIM,Zs12)
DIMENSI@N Y(NDIM)

NMIN=z1

NMAXaN
INTER=0,5#FLBAT(NMAX=NMINI+O,1
NTEST=NMIN+INTER
IF(Z2=«Y(NTEST)) 1,2,3
NMAXaNTEST

G To 4

I1Z2NTEST

Gg T@ 999

NMINSNTEST
IF(NMAXeNMIN=1) 5.,5,36
1ZaNMAX=1

-43-

GMﬂerﬂn
GMQFT431
GMSCT4R?
GMscI483
GMRCT484
GMSrT4AR5
GMSCT484
GMSNT4R7
GMS (7484
GMSCT4R9
GMRCT490
GMSNT491
GMQPT40?
GMQPT491
CM:PT404
GMgrT495
GMRCT496
GMGPT497
GM:pT4qB
GMS(T499
cmerr5nn
GMQPTSG1
GMqrtsn?
GM:FTSO!
GMerT504
GMQPTSOS
GM:PTBné
GMggrsn7
GMROT5N8
GMSTSARe
GMQPT510
GM<rTS11
CM:PTS19
GmﬁrT511
GMQPT514
GMSTT515
GMANTS516
GM:FT517
GMQFT518
GM:PT519
GM:PTS?G
GMQPT591
PMQFTE??
GMQFTS?S
GMROT524
GM]NTS25
GM&CTS26
GMSET527
GM]OTS528
GMg 7529
GMSCTSIN
GMSrT534
GMET5%2
GMSCTS3x
Gmcr75!4
GMRFTSKS
GMaCT536
GMST537
GMGFTSKB
GMSFT530



999 RETURN GM]LT54N
END GMSAT541
AMRATS542

bl
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Table I

Nominal Conditions Considered in Sample

Geometry and Absorption Calculations

Geometry:
RS =1.9 cm, H=:3.8 cm, Dn = 12.8 cm,
DY = 130.0 cm, a = 0.5 cm, various ODET

Mesh size:
nT =1, nH = 5, nR

Sample material and gamma ray:
Natural ironm, EY = 0,846 MeV

]
w
-
=}
]
w

Neutron source:
Isotropic yield, Q = o, A1 =1, A2 = 7.

Incident energy selected so E = 1 MeV.
n,max

a
Cross sections®:

ZnT= 0.27 , 'zyT = 0.5

(do/dQ)Y = 0.038 b/sr (isotropic)

Gamma-detector efficiency:

Arbitrary constant value

aThese are nominal values which are not necessarily equal to

ENDF/B-IV values for iron.
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Table II

Computed Yield Ratios Which
Demonstrate the Effects of

Geometry and Radiation Absorption

"Front' - to_ "Near" - to
"back" ratio "far" ratio”
1) Neutron and gamma-ray absorption 2.11 2.11
ii) Gamma-ray absorption only 1.19 2.19
jii) Neutron absorption only 1.78 1.03

iv) No absorption 1.16 1.02

a Ratios are defined in Section 3.2.
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Table TIII

Dependence of Gamma-Ray
Yield on the Sample Radius

Rg Y, RsYy"

(cm)
0.635 1 1
0.95 0.84 1.25
1.27 0.70 1.41
1.59 0.60 1.50
1.905 0.52 1.55
2.54 0.39 1.57

a g _ °
Yo computed for GDET = 90°. Values are relative to

corresponding values for RS = 0.635 cm.
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Table IV

Nominal Conditions Considered in

Sample Multiple Scattering Calculations

Geometry:
' R.=1.9 cm, H = 3.8 cm, D = 11.4 cm,
S n

D_Y = 130.0 cm, Various eDET

Sample material and gamma ray:
Natural irom, EY = 0.846 MeV

Neutron source:
Isotropic yield, Q = O, Al =1, A2 = very large.

Neutron energy En = 2 MeV.

a
Cross sections :

znT = 0.17

Elastic scattering, Q = O, Al =1, A2 = 55.85,

Ipp = 0.17 (isotropic)

Inelastic scattering, Q = -0.85 MeV, Al =1, A2 = 55.85,

EIN = 0.05

(dc/dﬂ)Y = 0.038 b/sr (isotropic)

8 These are nominal values which are not necessarily equal to

ENDF/B-IV values for irom.
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Table V

Effect of Coherent Photon Scattering

Sample E

Y ) a
Material (MeV) Ratio YU/(YU + YS)
Li | 0.1 1.00
(Z=3)

AL 0.1 0.96
(z=13) 0.3 0.99
0.5 1.00
T4 0.1 0.95
(Z=22) 0.3 0.98
0.5 0.99
0.8 1.00
Fe 0.1 0.98
(Z=26) 0.3 0.98
0.5 0.99
0.8 1.00
Zn 0.1 0.99
" (Z=30) 0.3 0.97
0.5 0.99
0.8 0.99
1.0 1.00
Mo 0.1 1.00
(Z=42) 0.3 0.97
0.5 0.98
0.8 . 0.99
1.0 . 0.99
2.0 1.00

a YU and Yskare computed using Eqn. (81) and (82). Values of the

ratio for larger EY are v 1.00 if not given in the table.
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Fig. 1.

Fig., 2,

Fig. 3.

Figs.4
thru
Fig. 7

Fig. 8.

Fig. 9.

Fig.10.
Fig.1l.

Fig.12,

FIGURE CAPTIONS

The total cross section for natural iron in the energy range
0.1-2 MeV. The s80lid curve represents ENDF/B-IV values [14].
The dashed curve represents the same information after smooth~-
ing with a 0.1-MeV resolution function. The smoothed excita-
tion function can be approximated by connecting the large dots
with straight line gegments. This simulates linear interpola-
tion of a lookup table which is stored in the memory of a
digital computer. (ANL Neg. No. 116-75-91).

Schematic diagrams to illustrate geometry applicable to compu-
tation of the yield of gamma-rays from (n,Xy) reactions pro-
duced by unscattered neutrons. (ANL Neg. No. 116-75-89).
Distortion of an isotropic gamma-ray production angular distri-
bution by radiation absorption. (ANL Neg. No. 116-75-85).
Sample midplane relative-yield profiles for the following re-
spective conditions: 1) neutron and gamma-ray absorption, ii)
gamma-ray absorption only, iii) neutron absorption only, and iv)
no absorption. (ANL Neg. Nos. 116-75-84, 116-75-~88, 116-75-86,
116-75-82).

Computed angular resolution functions for several values of

eDET and Table I parameters. (ANL Neg. Nos. 116-75-80).
Demonstration of the factorization rule. The solid lines repre-
sent assumed differential cross section‘functions while the
solid circles represent values of YO/(l -Acos GDET) for various
eDET but plotted at the corresponding angles <@nY>. All results
are normalized to unity at Oppr = 90°. (ANL Neg. No. 116-75-87).
Geometry appropriate to multiple-scattering calculations for the
first two scattering orders. (ANL Neg. No. 116~75-92).

Plot of relative values for YO’ Yl’ Y2 and Y3 computed using the
parameters in Table IV. (ANL Neg. No. 116-75-90).

Plots of dl, @y, O and &TOT for various sample sizes (H = 2 Rs).

(ANL Neg. No. 116-75-83).

Fig. 13. The relative yield of 0.846-MeV gamma rays per atom for various

natural iron samples. Comparison is made between the experimental
results and the results of four sets of computations described in

Section 5. (ANL Neg. No. 166-75-81).
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Fig. 4

NEUTRON AND GAMMA-RAY ABSORPTION
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Fig. 5
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Fig. 6
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Fig. 7
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Fig. 10
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MULTIPLE-SCATTERING PARAMETER, ABSOLUTE
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